

Shepparton East Overland Flow Urban Flood Study – Final Report

Reference: R.M8415.003.01.FinalReport.docx Date: March 2017

Shepparton East Overland Flow Urban Flood Study – Final Report

Prepared for: Goulburn Broken Catchment Management Authority

Prepared by: BMT WBM Pty Ltd (Member of the BMT group of companies)

Offices

Brisbane Denver London Mackay Melbourne Newcastle Perth Sydney Vancouver

Document Control Sheet

	Document:	R.M8415.003.01.FinalReport.docx		
BMT WBM Pty Ltd Level 5, 99 King Street Melbourne Vic 3000	Title:	Shepparton East Overland Flow Urban Flood Study – Final Report		
Australia PO Box 604	Project Manager:	Philip Pedruco		
Collins Street West Vic 8007 Tel: +61 3 8620 6100	Author:	Philip Pedruco, Dexter Reynolds and Michael South		
Fax: +61 3 8620 6105 ABN 54 010 830 421	Client:	Goulburn Broken Catchment Management Authority		
www.bmtwbm.com.au	Client Contact:	Guy Tierney		
	Client Reference:	575		
Synopsis: This report provides the methodology and results from the flood modelling and mapping for the Shepparton East Overland Urban Flood Study project.				

REVISION/CHECKING HISTORY

Revision Number	Date	Checked by		Issued by	
0	08/12/2016	MS		JL	
1	03/03/2017	MS	-h/ath	JL	Fateriler

DISTRIBUTION

Destination	Revision										
	0	1	2	3	4	5	6	7	8	9	10
Goulburn Broken Catchment Management Authority	PDF	PDF									
BMT WBM File	PDF	PDF									

Executive Summary

This Executive Summary outlines the objectives, methodology and key outcomes of the Shepparton East Overland Flow Urban Flood Study.

Introduction

BMT WBM Pty Ltd (BMT WBM) was commissioned by the Goulburn Broken Catchment Management Authority (GBCMA) to undertake the Shepparton East Overland Urban Flood Study. The study area is located on the eastern fringe of the city of Shepparton. Figure 1-1 shows the general location of the area in relation to its catchment and surrounding features.

The purpose of this report is to document the methodology and results of the hydrological and hydraulic modelling together with the flood mapping and risk outputs.

The study area drains both rural and urban land through a series of man-made drains rather than a natural drainage system. As such the study area's drainage system is similar to an urban system. For this reason the flood modelling, both hydrologic and hydraulic, has been undertaken in accordance with the Melbourne Water (MW) Corporation Flood Mapping Projects Guidelines and Technical Specification.

Study Approach

The study involved the following five key stages:

- data collection;
- hydrological modelling;
- hydraulic modelling;
- flood mapping and deliverables; and
- reporting.

Flood Modelling

This study requires the development of both hydrological and hydraulic models to undertake flood mapping of the study area. Rainfall-runoff (hydrological) modelling of the study area was undertaken with the RORB hydrological modelling package.

The RORB model underwent a joint verification in conjunction with the hydraulic model (TUFLOW) development. Following this verification the design flow outputs from RORB provided inputs into the TUFLOW hydraulic model.

The results from the hydraulic modelling were used to develop flood mapping products, undertake a flood damages assessment, and inform potential flood mitigation strategies.

The flood model provided base case or existing conditions flood information (including flood maps) for the catchment for the 20%, 10%, 5%, 2%, 1%, 0.5% and 0.2% Annual Exceedance Probability (AEP) flood events. The 1% AEP flood extent and depth is shown in Figure 1. In addition to the existing conditions modelling, sensitivity testing of increased urbanisation, climate change and a combination of the two was undertaken.

The modelling showed that the catchment is susceptible to widespread and generally shallow slow moving flooding in even frequent (20% AEP) flood events. Whilst flooding is extensive in many of the developed areas of the catchment, it is generally confined to the road reserves, and where flows pass through residential or commercial properties the peak depths are shallow and with low velocity.

With the exception of the many retarding basins throughout the catchment and at small number of roadways, the flood hazard, as defined by the ARR revision project, shows almost the entire catchment as presenting a low risk to children.

Flood Damages Assessment

A flood damages assessment was completed for the 20%, 10%, 5%, 2%, 1%, 0.5% and 0.2% AEP flood events to ascertain the economic damage from flooding to Shepparton East annually. The damages included damage to residential, commercial, agricultural and road infrastructure as well as indirect damages. A loss probability curve was produced to enable the calculation of annual flood damages. Large damages from low probability events are combined with lower damages from more frequent flood events and annual average damage (AAD) is calculated. A summary of the damages is provided in Table 1.

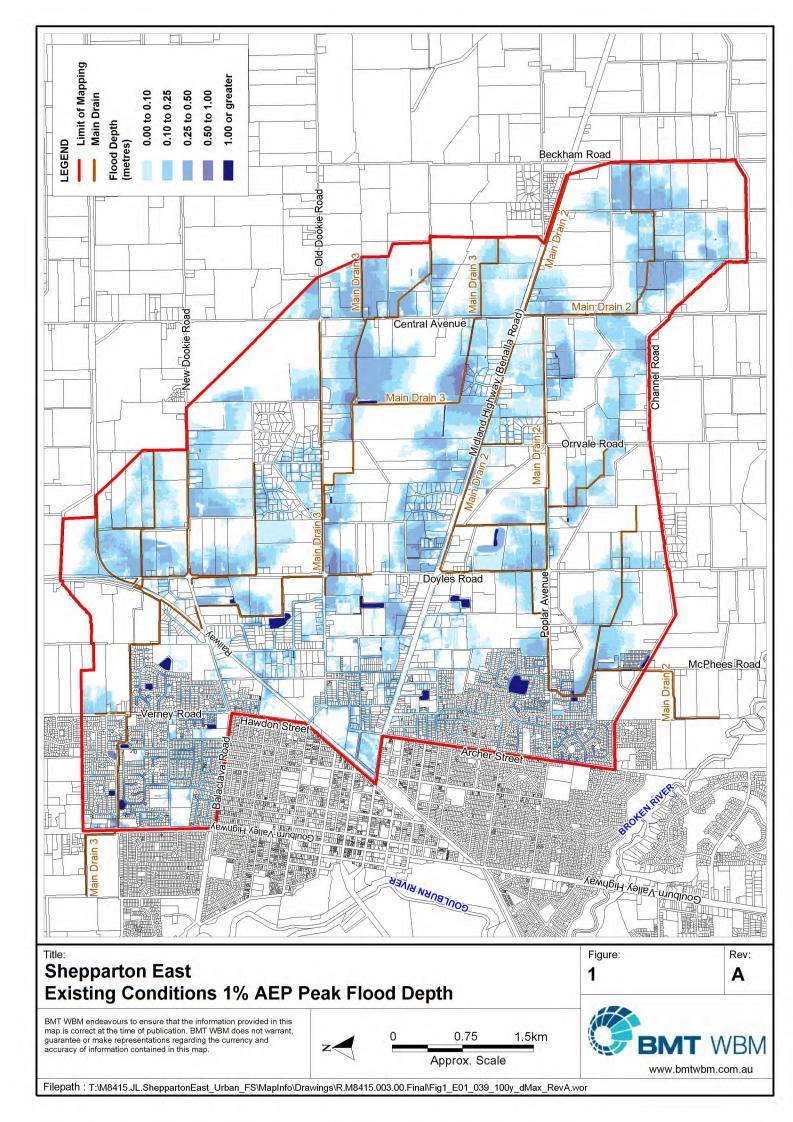

Event (ARI)	ANUFLOOD Building Damages	RAM Agricultural Damages	RAM Road Infrastructure Damages	Indirect Damages	Total Damages	Contribution to AAD
PMP	-	-	-	-	\$126,006,700	
0.2%	\$66,723,800	\$12,437,300	\$2,449,092	\$29,014,400	\$110,624,600	\$236,631
0.5%	\$54,052,600	\$10,971,700	\$2,322,905	\$20,204,200	\$87,551,400	\$297,264
1%	\$45,426,800	\$9,788,900	\$2,204,335	\$17,226,000	\$74,646,000	\$405,494
2%	\$34,676,500	\$8,804,400	\$2,101,450	\$13,674,700	\$59,257,000	\$669,515
5%	\$25,249,700	\$7,302,300	\$1,905,514	\$10,337,300	\$44,794,800	\$1,560,777
10%	\$19,491,500	\$6,023,600	\$1,721,972	\$8,171,100	\$35,408,200	\$2,005,075
20%	\$12,878,600	\$5,014,300	\$1,535,233	\$5,828,400	\$25,256,500	\$3,033,235
50%	-	-	-	-	-	\$3,788,475
Average Annual Damages						\$11,996,500

 Table 1
 Summary of Flood Damages for Shepparton East

The existing condition AAD for the catchment is \$11,996,500.

The damages within the catchment are largely driven by the damage to buildings, particularly commercial and industrial property. This is in part due to the conservative assumption of using the planning scheme rather than individual property assessments but also due to the widespread shallow flooding throughout the catchment which is a limitation of the Rapid Appraisal Method (RAM).

Contents

Exe	cutiv	e Summ	ary	i			
1	Intr	oductior	1	1			
	1.1	Catchm	ent Description	1			
	1.2	Study C	Dbjectives	2			
		1.2.1	Study Scenarios and Events	3			
	1.3	Study A	pproach	3			
2	Dat	a Collati	on	6			
	2.1	Topogra	aphic Data	6			
	2.2	Aerial P	hotography	6			
	2.3	Planning	g Scheme	6			
	2.4	Drainag	e Infrastructure	8			
	2.5						
	2.6	Streamf	low Data	8			
	2.7	Rainfall	Data	8			
3	Hyd	Irologic	Modelling	11			
	3.1	Fraction Impervious					
	3.2	Rationa	I Method	14			
		3.2.1	Description	14			
		3.2.2	Time of Concentration	14			
		3.2.3	Runoff Coefficient	15			
		3.2.4	Rainfall	15			
		3.2.5	Results	16			
	3.3	RORB	Modelling	16			
		3.3.1	Model Schematisation	16			
		3.3.1.1	Catchment Delineation	17			
		3.3.1.2	Sub-Catchment Definition	17			
		3.3.1.3	Reach Types	18			
		3.3.1.4	Retarding Basins and Storages	19			
		3.3.1.5	Diversions	24			
		3.3.1.6	Intensity Frequency Duration (IFD) Parameters	24			
		3.3.1.7	Loss Model	24			
		3.3.1.8	Model Calibration	25			
		3.3.1.9	RORB Parameter Summary	27			
		3.3.1.10	Probable Maximum Precipitation	27			

iv

		3.3.2	RORB Results Summary	27		
		3.3.2.1	Base Case Scenario	27		
		3.3.2.2	Developed Case Scenario	28		
		3.3.2.3	Climate Change Scenarios	29		
		3.3.3	Existing Condition Scenarios: Base Case and Developed Case Peak Hydrographs	30		
		3.3.4	Climate Change Scenarios: Base Case and Developed Case Peak Hydrographs	38		
		3.3.5	Comparison to Previous Models	45		
	3.4	Joint Ve	erification with the Hydraulic Model	45		
		3.4.1	Joint Verification Process	46		
		3.4.2	Rainfall Analysis	46		
		3.4.3	Joint Verification Results	47		
4	Hyd	Iraulic N	Nodelling	50		
	4.1	Model [Description	50		
		4.1.1	Model Schematisation	50		
	4.2	Hydrau	lic Modelling	51		
		4.2.1	TUFLOW Model Version	51		
		4.2.2	Model Extent	51		
	4.3	2D Don	nain	51		
		4.3.1	Topography	51		
		4.3.2	Breaklines	51		
		4.3.3	Retarding basins	52		
		4.3.4	Grid Resolution	52		
		4.3.5	Surface Roughness	52		
	4.4	1D Network				
		4.4.1	Underground Drainage Network	53		
		4.4.2	Drainage Network Losses	54		
		4.4.3	Open Drainage Network	54		
	4.5	Bounda	ary Conditions	54		
		4.5.1	External Boundaries	54		
		4.5.2	Internal Boundaries	55		
		4.5.3	1D / 2D Linking	55		
	4.6	Hydrau	lic Model Verification	59		
		4.6.1	Verification of the February 2013 Flood Event	59		
	4.7	Design	Event Modelling	61		
		4.7.1	Design Event Modelling	61		

		4.7.2	Storm Duration Selection	61				
5	Mod	Modelling Quality Assurance						
	5.1	Hydrolo	ogic (RORB) Model Review	62				
	5.2	Hydrau	lic (TUFLOW) Model Review	62				
		5.2.1	General Quality Assurance	62				
		5.2.2	1D Domain	62				
		5.2.3	2D Domain	63				
		5.2.4	Volume Checks and Mass Conservation	63				
6	Floo	od Mapp	ping and Results	65				
	6.1	Existing	g Case	65				
		6.1.1	Flood Depth Mapping and Description	65				
		6.1.2	Flood Velocity Mapping	65				
	6.2	Develo	ped Case	70				
		6.2.1	Flood Depth Mapping and Description	70				
		6.2.2	Flood Velocity Mapping	70				
	6.3	Existing	g Case - Climate Change Sensitivity	75				
	6.4	Develo	ped Case - Climate Change Sensitivity	78				
	6.5	Flood H	Hazard Mapping	81				
	6.6	Propert	ty Risk Mapping	86				
7	Floo	d Dam	ages Assessment	91				
	7.1	Method	dology	93				
	7.2	Key As	93					
	7.3	Rapid A	Appraisal Method (RAM) Damages Assessment	94				
		7.3.1	RAM Building Damages	94				
		7.3.2	RAM Agricultural Damages	95				
		7.3.3	RAM Road Infrastructure Damages	96				
	7.4	Averag	e Annual Damages	97				
8	Floo	od Mana	agement	99				
	8.1	Backgr	ound	99				
	8.2	Key Iss	99					
	8.3	Structu	99					
	8.4	Non-St	ructural	99				
		8.4.1	Overlays	100				
		8.4.1.1	Building Controls	100				
		8.4.1.2	Development Controls	100				
		8.4.2	Declared Flood Levels	100				

	8.4.3	Planning For Climate Change	101
9	Summary	/ and Recommendations	103
10	Referenc	es	104
Арр	endix A	Shepparton Retarding Basins – Locality Plan	A-1
Арр	endix B	Time of Concentration Calculations	B-1
Арр	endix C	IFD Table	C-1
Арр	endix D	PMF Summary Worksheet	D-1
App	endix E	Peak Flood Depth Maps	E-1
Арр	endix F	Peak Flood Velocity	F-1
Арр	endix G	ARR Hazardous to Children	G-1

List of Figures

Figure 1	1% AEP Flood Depth	iii
Figure 1-1	Shepparton East - Locality Plan	4
Figure 1-2	Shepparton East – Catchment Plan	5
Figure 2-1	Digital Elevation Model Extent	7
Figure 2-2	Rainfall Gauges	10
Figure 3-1	RORB Model Schematisation	20
Figure 3-2	RORB Model Schematisation Main Drain 2	21
Figure 3-3	RORB Model Schematisation Main Drain 3	22
Figure 3-4	RORB Model Schematisation Urban Sub-Catchments	23
Figure 3-5	RORB Critical Hydrographs at Beckham Road	30
Figure 3-6	RORB Critical Hydrographs at Central Avenue	31
Figure 3-7	RORB Critical Hydrographs at Doyles Road	32
Figure 3-8	RORB Critical Hydrographs at Main Drain 2 Outlet	33
Figure 3-9	RORB Critical Hydrographs at 314 Old Dookie Road	34
Figure 3-10	RORB Critical Hydrographs at Railway	35
Figure 3-11	RORB Critical Hydrographs at Main Drain 3 Outlet	36
Figure 3-12	Peak Discharge Hydrographs for PMF at Key Locations	37
Figure 3-13	RORB Critical Climate Change Hydrographs at Beckham Road	38
Figure 3-14	RORB Critical Climate Change Hydrographs at Central Avenue	39
Figure 3-15	RORB Critical Climate Change Hydrographs at Doyles Road	40
Figure 3-16	RORB Critical Climate Change Hydrographs at Main Drain 2 Outlet	41
Figure 3-17	RORB Critical Climate Change Hydrographs at 314 Old Dookie Road	42
Figure 3-18	RORB Critical Climate Change Hydrographs at Railway	43
Figure 3-19	RORB Critical Climate Change Hydrographs at Main Drain 3 Outlet	44
Figure 3-20	February 2013 Rainfall Grid	48
Figure 3-21	February 2013 Thiessian Polygons	49
Figure 4-1	TUFLOW Model Layout	56
Figure 4-2	Manning's 'n' Roughness Coefficient Distribution – Existing Conditions	57
Figure 4-3	Manning's 'n' Roughness Coefficient Distribution – Ultimate Conditions	58
Figure 4-4	February 2013 Verification Event Peak Flood Depths	60
Figure 6-1	Existing Conditions 20% AEP Peak Flood Depth	67
Figure 6-2	Existing Conditions 1% AEP Peak Flood Depth	68
Figure 6-3	Existing Conditions 1% AEP Peak Flood Velocity	69

Figure 6-4	Developed Conditions 20% AEP Peak Flood Depth	71
Figure 6-5	Developed Conditions 1% AEP Peak Flood Depth	72
Figure 6-6	Developed Conditions 1% AEP Peak Flood Velocity	73
Figure 6-7	Increase in Developed Conditions 1% AEP Peak Flood Level	74
Figure 6-8	1% AEP Peak Flood Depth – Climate Change	76
Figure 6-9	Increase in 1% AEP Peak Flood Level – Climate Change	77
Figure 6-10	1% AEP Peak Flood Depth – Developed Climate Change	79
Figure 6-11	Increase in 1% AEP Peak Flood Level – Developed Climate Change	80
Figure 6-12	Existing Conditions Flood Hazard	82
Figure 6-13	Developed Conditions Flood Hazard	83
Figure 6-14	Climate Change Flood Hazard	84
Figure 6-15	Developed Climate Change Flood Hazard	85
Figure 6-16	Existing Conditions Flood Risk to Property	87
Figure 6-17	Developed Conditions Flood Risk to Property	88
Figure 6-18	Climate Change Flood Risk to Property	89
Figure 6-19	Developed Climate Change Flood Risk to Property	90
Figure 7-1	Types and Categorisation of Flood Damage Costs - Reproduced from <i>Rapid Appraisal Method (RAM) For Floodplain Management</i> (NRE 2000).	92
Figure 7-2	Existing Condition Probability-Damages Curve	98
Figure 8-1	Proposed Planning Scheme	102
Figure E-1	Existing Conditions 20% AEP Peak Flood Depth	E-2
Figure E-2	Existing Conditions 10% AEP Peak Flood Depth	E-3
Figure E-3	Existing Conditions 5% AEP Peak Flood Depth	E-4
Figure E-4	Existing Conditions 2% AEP Peak Flood Depth	E-5
Figure E-5	Existing Conditions 1% AEP Peak Flood Depth	E-6
Figure E-6	Existing Conditions 0.5% AEP Peak Flood Depth	E-7
Figure E-7	Existing Conditions 0.2% AEP Peak Flood Depth	E-8
Figure E-8	Developed Conditions 20% AEP Peak Flood Depth	E-9
Figure E-9	Developed Conditions 10% AEP Peak Flood Depth	E-10
Figure E-10	Developed Conditions 5% AEP Peak Flood Depth	E-11
Figure E-11	Developed Conditions 2% AEP Peak Flood Depth	E-12
Figure E-12	Developed Conditions 1% AEP Peak Flood Depth	E-13
Figure E-13	Developed Conditions 0.5% AEP Peak Flood Depth	E-14
Figure E-14	Developed Conditions 0.2% AEP Peak Flood Depth	E-15
Figure E-15	Climate Change 20% AEP Peak Flood Depth	E-16

Figure E-16	Climate Change 10% AEP Peak Flood Depth	E-17
Figure E-17	Climate Change 5% AEP Peak Flood Depth	E-18
Figure E-18	Climate Change 2% AEP Peak Flood Depth	E-19
Figure E-19	Climate Change 1% AEP Peak Flood Depth	E-20
Figure E-20	Climate Change 0.5% AEP Peak Flood Depth	E-21
Figure E-21	Climate Change 0.2% AEP Peak Flood Depth	E-22
Figure E-22	Developed Climate Change 20% AEP Peak Flood Depth	E-23
Figure E-23	Developed Climate Change 10% AEP Peak Flood Depth	E-24
Figure E-24	Developed Climate Change 5% AEP Peak Flood Depth	E-25
Figure E-25	Developed Climate Change 2% AEP Peak Flood Depth	E-26
Figure E-26	Developed Climate Change 1% AEP Peak Flood Depth	E-27
Figure E-27	Developed Climate Change 0.5% AEP Peak Flood Depth	E-28
Figure E-28	Developed Climate Change 0.2% AEP Peak Flood Depth	E-29
Figure F-1	Existing Conditions 20% AEP Peak Flood Velocity	F-2
Figure F-2	Existing Conditions 10% AEP Peak Flood Velocity	F-3
Figure F-3	Existing Conditions 5% AEP Peak Flood Velocity	F-4
Figure F-4	Existing Conditions 2% AEP Peak Flood Velocity	F-5
Figure F-5	Existing Conditions 1% AEP Peak Flood Velocity	F-6
Figure F-6	Existing Conditions 0.5% AEP Peak Flood Velocity	F-7
Figure F-7	Existing Conditions 0.2% AEP Peak Flood Velocity	F-8
Figure F-8	Developed Conditions 20% AEP Peak Flood Velocity	F-9
Figure F-9	Developed Conditions 10% AEP Peak Flood Velocity	F-10
Figure F-10	Developed Conditions 5% AEP Peak Flood Velocity	F-11
Figure F-11	Developed Conditions 2% AEP Peak Flood Velocity	F-12
Figure F-12	Developed Conditions 1% AEP Peak Flood Velocity	F-13
Figure F-13	Developed Conditions 0.5% AEP Peak Flood Velocity	F-14
Figure F-14	Developed Conditions 0.2% AEP Peak Flood Velocity	F-15
Figure F-15	Climate Change 20% AEP Peak Flood Velocity	F-16
Figure F-16	Climate Change 10% AEP Peak Flood Velocity	F-17
Figure F-17	Climate Change 5% AEP Peak Flood Velocity	F-18
Figure F-18	Climate Change 2% AEP Peak Flood Velocity	F-19
Figure F-19	Climate Change 1% AEP Peak Flood Velocity	F-20
Figure F-20	Climate Change 0.5% AEP Peak Flood Velocity	F-21
Figure F-21	Climate Change 0.2% AEP Peak Flood Velocity	F-22
Figure F-22	Developed Climate Change 20% AEP Peak Flood Velocity	F-23

Figure F-23	Developed Climate Change 10% AEP Peak Flood Velocity	F-24
Figure F-24	Developed Climate Change 5% AEP Peak Flood Velocity	F-25
Figure F-25	Developed Climate Change 2% AEP Peak Flood Velocity	F-26
Figure F-26	Developed Climate Change 1% AEP Peak Flood Velocity	F-27
Figure F-27	Developed Climate Change 0.5% AEP Peak Flood Velocity	F-28
Figure F-28	Developed Climate Change 0.2% AEP Peak Flood Velocity	F-29
Figure G-1	Existing Conditions 20% AEP Peak Flood Hazard - ARR Hazardous to Children	G-2
Figure G-2	Existing Conditions 10% AEP Peak Flood Hazard - ARR Hazardous to Children	G-3
Figure G-3	Existing Conditions 5% AEP Peak Flood Hazard - ARR Hazardous to Children	G-4
Figure G-4	Existing Conditions 2% AEP Peak Flood Hazard - ARR Hazardous to Children	G-5
Figure G-5	Existing Conditions 1% AEP Peak Flood Hazard - ARR Hazardous to Children	G-6
Figure G-6	Existing Conditions 0.5% AEP Peak Flood Hazard - ARR Hazardous to Children	G-7
Figure G-7	Existing Conditions 0.2% AEP Peak Flood Hazard - ARR Hazardous to Children	G-8
Figure G-8	Developed Conditions 20% AEP Peak Flood Hazard - ARR Hazardous to Children	G-9
Figure G-9	Developed Conditions 10% AEP Peak Flood Hazard - ARR Hazardous to Children	G-10
Figure G-10	Developed Conditions 5% AEP Peak Flood Hazard - ARR Hazardous to Children	G-11
Figure G-11	Developed Conditions 2% AEP Peak Flood Hazard - ARR Hazardous to Children	G-12
Figure G-12	Developed Conditions 1% AEP Peak Flood Hazard - ARR Hazardous to Children	G-13
Figure G-13	Developed Conditions 0.5% AEP Peak Flood Hazard - ARR Hazardous to Children	G-14
Figure G-14	Developed Conditions 0.2% AEP Peak Flood Hazard - ARR Hazardous to Children	G-15
Figure G-15	Climate Change 20% AEP Peak Flood Hazard - ARR Hazardous to Children	G-16
Figure G-16	Climate Change 10% AEP Peak Flood Hazard - ARR Hazardous to Children	G-17
Figure G-17	Climate Change 5% AEP Peak Flood Hazard - ARR Hazardous to Children	G-18
Figure G-18	Climate Change 2% AEP Peak Flood Hazard - ARR Hazardous to Children	G-19
Figure G-19	Climate Change 1% AEP Peak Flood Hazard - ARR Hazardous to Children	G-20
Figure G-20	Climate Change 0.5% AEP Peak Flood Hazard - ARR Hazardous to Children	G-21
Figure G-21	Climate Change 0.2% AEP Peak Flood Hazard - ARR Hazardous to Children	G-22

Figure G-22	Developed Climate Change 20% AEP Peak Flood Hazard - ARR Hazardous to Children	G-23
Figure G-23	Developed Climate Change 10% AEP Peak Flood Hazard - ARR Hazardous to Children	G-24
Figure G-24	Developed Climate Change 5% AEP Peak Flood Hazard - ARR Hazardous to Children	G-25
Figure G-25	Developed Climate Change 2% AEP Peak Flood Hazard - ARR Hazardous to Children	G-26
Figure G-26	Developed Climate Change 1% AEP Peak Flood Hazard - ARR Hazardous to Children	G-27
Figure G-27	Developed Climate Change 0.5% AEP Peak Flood Hazard - ARR Hazardous to Children	G-28
Figure G-28	Developed Climate Change 0.2% AEP Peak Flood Hazard - ARR Hazardous to Children	G-29

List of Tables

Table 1	Summary of Flood Damages for Shepparton East	ii
Table 1-1	Required Modelling Scenarios	3
Table 2-1	Rainfall Data Collected	9
Table 3-1	Planning Scheme Zone Fraction Impervious	13
Table 3-2	Calculated <i>tc</i> Values	15
Table 3-3	Shepparton East Runoff Coefficient Values	15
Table 3-4	Rational Method Parameters and Results for the 1% AEP event	16
Table 3-5	Retarding Basins Located with Study Area	19
Table 3-6	IFD Parameters	24
Table 3-7	k_c and d_{av} Parameters for Shepparton East outlets	26
Table 3-8	Rational Method and RORB comparisons for Shepparton East	26
Table 3-9	RORB Parameters	27
Table 3-10	Base Case Predicted Peak Discharges	28
Table 3-11	Ultimate Developed Case Predicted Peak Discharges	28
Table 3-12	Climate Change A – Increased Rainfall Intensity Predicted Peak Discharge	29
Table 3-13	Climate Change B – Increased Rainfall Intensity Predicted Peak Discharge	29
Table 3-14	February 2013 Peak Discharges	47
Table 4-1	2D Domain Manning's 'n' Coefficients	53
Table 4-2	Comparison of Floodmarks to Modelled Flood Level	59
Table 4-3	Storm Durations Modelled for Final Model	61
Table 5-1	Volume Check	64
Table 6-1	Properties at Risk	86
Table 7-1	RAM Building Potential Damage Values	95
Table 7-2	Existing Conditions RAM Building Damages Summary	95
Table 7-3	RAM Agricultural Damage Values	95
Table 7-4	Existing Conditions RAM Agricultural Damages Summary	96
Table 7-5	RAM Road Infrastructure Damage Values	96
Table 7-6	Existing Conditions RAM Road Infrastructure Damages Summary	96
Table 7-7	Existing Conditions Damages Summary	97

1 Introduction

BMT WBM Pty Ltd (BMT WBM) was commissioned by Goulburn Broken Catchment Management Authority (GBCMA) to undertake the Shepparton East Overland Urban Flood Study. The study area is located on the eastern fringe of the city of Shepparton. Figure 1-1 shows the general location of the area in relation to its catchment and surrounding features.

This study requires the development of both hydrological and hydraulic models to undertake flood mapping of the study area. Rainfall-runoff (hydrological) modelling of the study area was undertaken with the RORB hydrological modelling package.

The RORB model underwent a joint verification in conjunction with the hydraulic model (TUFLOW) development. Following this verification the design flow outputs from RORB provided inputs into the TUFLOW hydraulic model.

The results from the hydraulic modelling were used to develop flood mapping products, undertake a flood damages assessment, and inform potential flood mitigation strategies.

The purpose of this report is to document the development and results of the hydrological and hydraulic modelling together with the flood mapping and risk products.

The study area drains both rural and urban land through a series of man-made drains rather than a natural drainage system. As such the study area's drainage system is similar to an urban system. For this reason the flood modelling, both hydrologic and hydraulic, has been undertaken in accordance with the Melbourne Water (MW) Corporation Flood Mapping Projects Guidelines and Technical Specification (MW Technical Specification, MW 2011).

1.1 Catchment Description

The Shepparton East Overland Urban Flood Study area, together with key drainage features, is shown in Figure 1-2. The study area is located in north-central Victoria approximately 180 km north of Melbourne and covers an area of 49 km² to the east of Shepparton township (as shown in Figure 1-1).

There are no significant natural waterways in the study area; however, it is drained by an extensive network of manmade open drains. Goulburn Murray Water Main Drain 2 flows west from the East Goulburn Main Channel, draining agricultural land between the Midland Highway and the Broken River. Its 12.5 km length drains almost 16 km² of predominantly agricultural land with some urban areas. The drain discharges to the Broken River between Archer Street and McPhees Road. Goulburn Murray Water Main Drain 3 flows for 20 km north-west from the East Goulburn Main Channel, crossing Central Avenue, Doyles Road and the Goulburn Valley Highway before discharging into Goulburn River at Reedy Swamp. It drains an area of around 20 km² to the Goulburn Valley Highway, which forms the downstream extent of the study area. Open drains from agricultural properties combine with Main Drain 2 and Main Drain 3 to form a dense drainage network.

In addition to the Main Drain catchment's there are a number of small urban catchment which drain directly to the Broken and Goulburn Rivers by the urban drainage system. These catchments only partially fall into the area to be flood mapped as discussed in Section 3.3.1.1. The Midland

Highway forms a significant ridge, largely preventing cross-catchment flows between the areas contributing to flow in Main Drain 2 and Main Drain 3. Throughout this study, the hydrological approach has considered the contributing catchments to Main Drain 2 and Main Drain 3 independently of one another as discussed in Section 3.3.1.1. Parameters and results for each of the Main Drain catchments have been reported accordingly. It is of note that any cross-catchment flow will be explicitly modelled in the hydraulic model.

The catchment area is, in general, flat with raised irrigation channels forming barriers to overland flow. For this reason the raised irrigation channels often form the catchment boundaries.

The area to be hydraulically modelled, or the study area, is limited to the extent of the LiDAR data which covers the majority of the catchment. The study area is bordered to the west by Archer Street, Hawdon Street and the Goulburn Valley Highway within Shepparton township. The irrigation channel along Channel Road forms the southern boundary of the study area. The north and east boundary of the flood mapping is limited to the available LiDAR. The flood mapping boundary together with the catchment boundary is shown in Figure 1-2.

Land use within the catchment is mixed. The majority of land use is residential and agricultural (in particular orchards). The orchards have water supplied by an extensive network of irrigation channels which, as noted above, are raised above the surrounding ground levels. Other land use types within the catchment include industrial and commercial.

1.2 Study Objectives

The objective of the study was to create a hydrologic model of the catchment to model the rainfallrunoff process, as well as a 1D/2D dynamically linked TUFLOW hydraulic model to undertake flood mapping of the catchment. The results from the coupled hydrologic and hydraulic model (the flood model) were used to create flood mapping and flood risk products required as well as informing potential flood mitigation strategies. This suite of products was used to improve the understanding of flooding and flood risk in East Shepparton, now and for the future conditions.

The flood model was run for the Scenarios and Events listed under the appropriate heading below.

Specifically, the study aimed to deliver:

- Flood mapping products for the four scenarios and AEP events listed below for the following variables:
 - Peak flood levels
 - Peak flood depths
 - Peak flood velocities; and
 - Flood Hazard.
- The following flood risk products
 - Flood mapping products that are suitable to define planning scheme flood overlays.
 - Recommendations for flood related planning conditions.
 - Tabulated property flood likelihood.

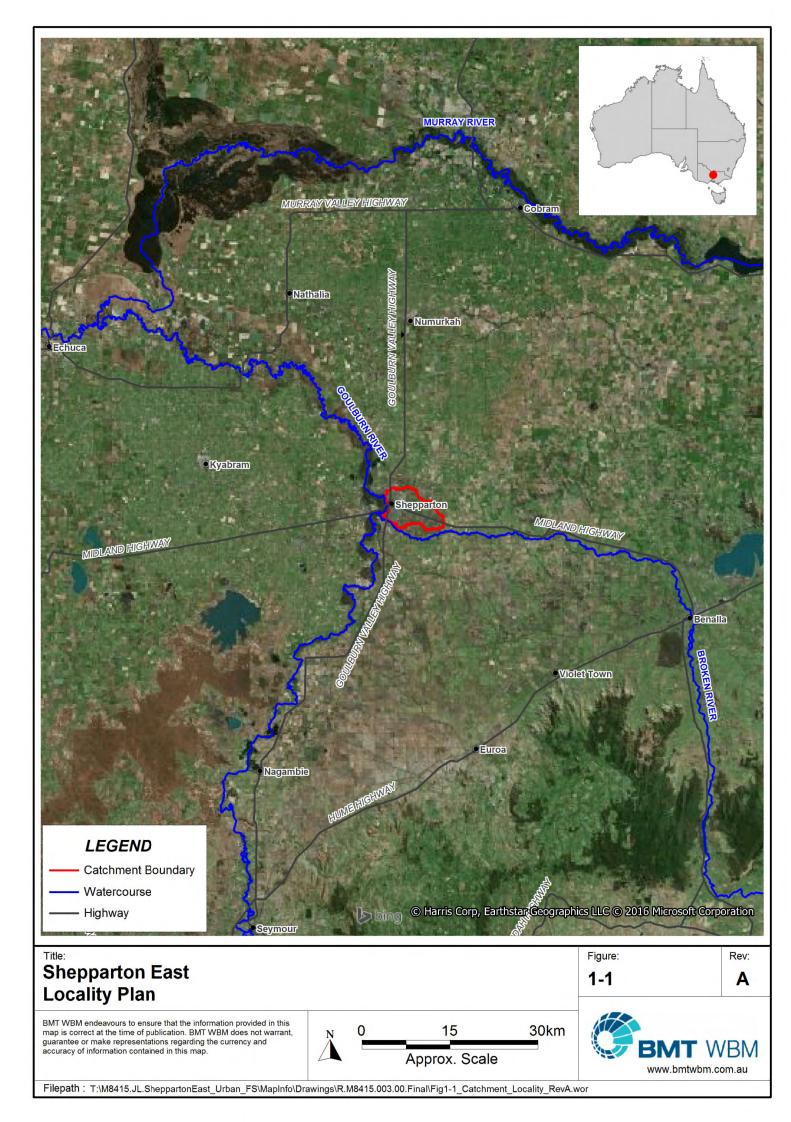
- Flood damages assessment using the Rapid Appraisal Method (RAM).
- Recommendations for structural flood mitigation measures.

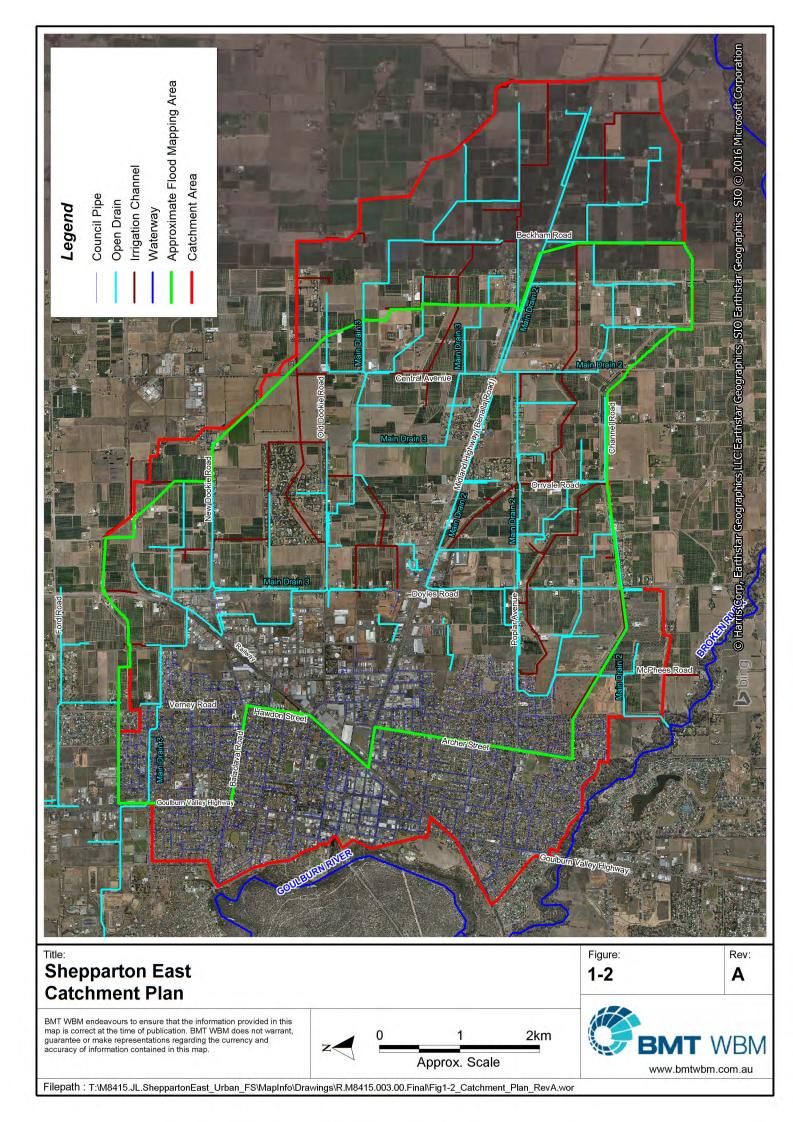
1.2.1 Study Scenarios and Events

A number of design events and different scenarios as listed in Table 1-1 and described in more detail below.

- Base:
 - Existing rainfall conditions; with
 - Current levels of development.
- Developed:
 - Existing rainfall conditions; with
 - Ultimate development conditions in line with future rezoning and development anticipated around Shepparton East.
- Climate Change A:
 - Existing rainfall conditions intensified by 32%; with
 - Current (Base) levels of development.
- Climate Change B:
 - Existing rainfall conditions intensified by 32%; with
 - Ultimate (Developed) levels of development.

Table 1-1 Required Modelling Scenarios


Scenario		AEP						
	20%	10%	5%	2%	1%	0.5%	0.2%	PMP
Base	\checkmark	✓						
Developed	\checkmark	✓						
Climate Change A	\checkmark	✓	✓	✓	\checkmark	~	✓	
Climate Change B	\checkmark	\checkmark	✓	~	\checkmark	\checkmark	✓	


1.3 Study Approach

The study involved the following five key stages:

- data collection;
- hydrological modelling;
- hydraulic modelling;
- flood mapping and deliverables; and
- reporting.

2 Data Collation

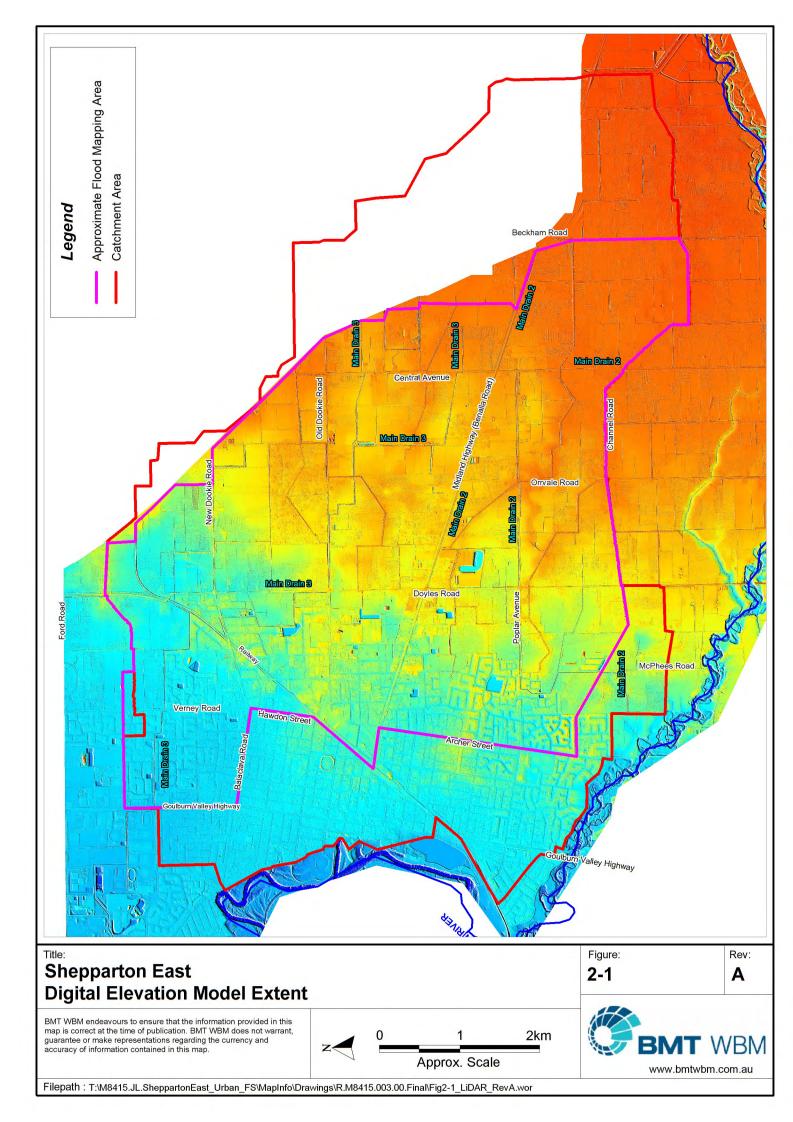
This section documents the data that has been collated by BMT WBM to date for the Study. BMT WBM has obtained information from a number of agencies and sources, including:

- Goulburn Broken Catchment Management Authority (GBCMA);
- Goulburn-Murray Water (GMW);
- Greater Shepparton City Council (GSCC);
- Bureau of Meteorology (BoM); and
- Department of Environment, Land, Water and Planning (DELWP).

2.1 **Topographic Data**

For the Study 0.5m gridded LiDAR was provided by GBCMA to form the basis of the Digital Elevation Model (DEM) which was used for both the hydrologic and hydraulic modelling components of the Study. The extent of the available LiDAR was less than the hydrologic catchment boundaries and formed the basis of the extent of the hydraulic model. The extent of the available LiDAR is shown in Figure 2-1.

2.2 Aerial Photography


Aerial Photography of the catchment is an important tool for verifying catchment characteristics such as land use, building footprints and other structures. During the hydrologic modelling stage this information was used, along with the planning scheme overlays, to estimate the fraction imperviousness of the catchment. Similarly, when developing the hydraulic model this information was used to assign the Manning's values (roughness) to the catchment and any blockages caused by buildings.

For the Study one geo-referenced tile covering the Shepparton was provided by GBCMA.

2.3 Planning Scheme

The planning scheme layers were used in conjunction with the aerial photography and on-ground photography to define the current land use of the catchment. The planning scheme layers were used in both the hydrologic and hydraulic model to define factors such as fraction impervious and Manning's values (roughness). This was supplied by GBCMA and covers the study area.

2.4 Drainage Infrastructure

Underground drainage, as well as culvert and open channel information, was used during the hydraulic modelling component of the flood study. It is important to incorporate any assets in the hydraulic model using as accurate information as possible. Locating the asset in the wrong location may disconnect it from the main flow channel. Whilst applying incorrect attributes (width/height/inverts/weirs/drops/etc) may result in incorrect flows passing through the structure. This may result in either elevated or depressed flooding upstream and over the road as well as elevated or depressed water levels downstream depending on which attributes are incorrect.

For the Study two asset collection surveys were undertaken to collate an accurate as possible GIS dataset of the existing drainage network. These were undertaken by Chris Smith Survey and Think Spatial. The survey by Chris Smith Survey captured details of the open channel drainage network whereas the survey by Think Spatial captured details of the underground drainage network.

The provided survey represented a significant improvement on the existing dataset. However many pits could be accessed and as such substantial infilling of the data was required, this is discussed in greater detail in Section 4.4.1.

Within the catchment there are currently 47 retarding basins. The location and details were provided by Greater Shepparton City Council.

2.5 Historic Flooding

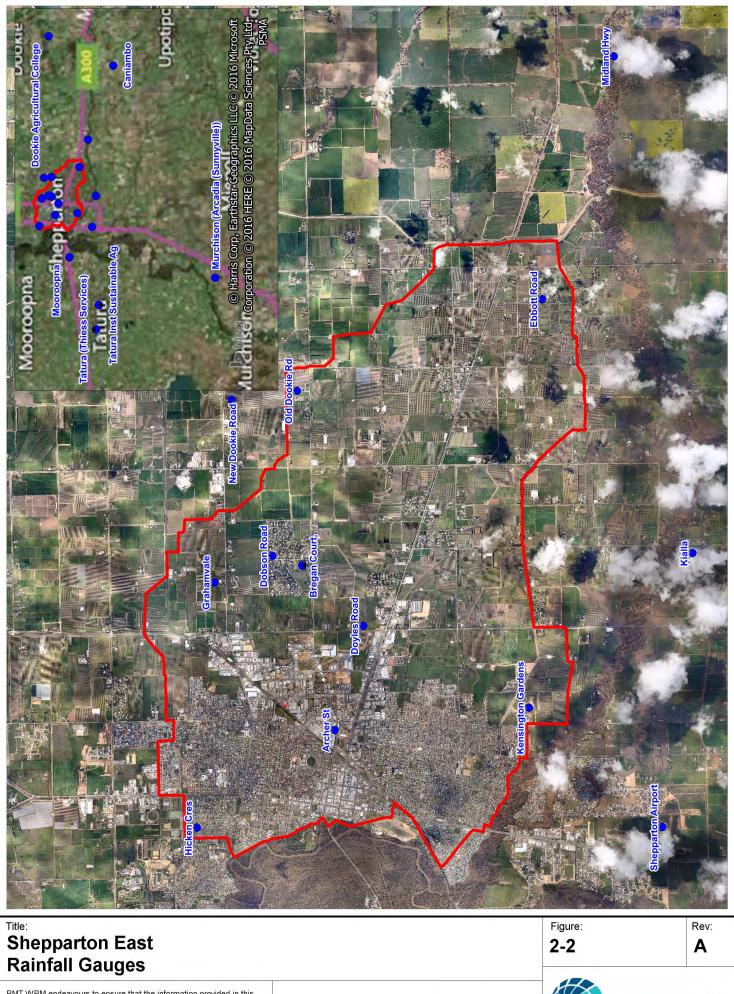
Due to the lack of stream or flow gauges within the catchment it was not possible to undertake a traditional model calibration. Fortuitously, a significant flood event occurred during the study. This allowed flood marks to be collected throughout the catchment, together with sub-daily rainfall information.

Immediately following the flood event that occurred on the 27th and 28th of February 2013 BMT WBM and GBCMA undertook a site inspection of the catchment. Soon after a flood level survey was commissioned and undertaken by Spiire. In total 120 flood marks were surveyed and these together with the rainfall information formed the basis of the joint verification of the hydrologic and hydraulic models.

2.6 Streamflow Data

There are no stream flow gauges available within the catchment that could be used to calibrate or verify the hydrologic and hydraulic models.

2.7 Rainfall Data


Rainfall data was used during the verification process whereby the hydrologic and hydraulic models underwent a joint verification of the February 2013 flood event. Both daily and pluviograph rainfall data was obtained from the Bureau of Meteorology as well as a number of privately owned and operated rain gauges within the Study area. The obtained rainfall gauges details are tabulated in Table 2-1 and presented spatially in Figure 2-2.

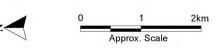

Station No.	Station Name	Station Type	Provider	
81034	Mooroopna	Daily	Bureau of Meteorology	
81095	Murchison (Arcadia (Sunnyville))	Daily	Bureau of Meteorology	
81013	Dookie Agricultural College	Daily	Bureau of Meteorology	
81114	Tatura (Thiess Services)	Daily	Bureau of Meteorology	
81007	Caniambo	Daily	Bureau of Meteorology	
01105	Channerton Airport	Daily	Bureau of Meteorology	
81125	Shepparton Airport	Pluviograph	Bureau of Meteorology	
04040	Tatura Institute for Sustainable	Daily	Bureau of Meteorology	
81049	Agriculture	Pluviograph	Bureau of Meteorology	
N/A	Archer St, Shepparton	Daily	Private Individual	
N/A	Midland Hwy, East Shepparton	Daily	Private Individual	
N/A	Bregan Court, Grahamvale	Daily	Private Individual	
N/A	Dobson Road, Grahamvale	Daily	Private Individual	
N/A	Hicken Crescent, Shepparton	Daily	Private Individual	
N/A	Ebbott Road, East Shepparton	Daily	Private Individual	
N/A	Old Dookie Rd, Shepparton East	Daily	Private Individual	
N/A	Doyles Road, Shepparton East	Daily	Private Individual	
N/A	Kensington Gardens, Channel Road, Shepparton	Daily	Private Individual	
N/A	540 New Dookie Road, Lemnos	Daily	Private Individual	
N1/A	Kialla	Daily	Defendente d'altre d	
N/A		Pluviograph	Private Individual	
N1/A	Orehomusla	Daily	Private Individual	
N/A	Grahamvale	Pluviograph		

Table 2-1 Raillall Data Collected	Table 2-1	Rainfall Data Collected
-----------------------------------	-----------	-------------------------

BMT WBM endeavours to ensure that the information provided in this	
map is correct at the time of publication. BMT WBM does not warrant,	
guarantee or make representations regarding the currency and	
accuracy of information contained in this map.	

Filepath : T:\M8415.JL.SheppartonEast_Urban_FS\MapInfo\Drawings\R.M8415.003.00.Final\Fig2-2_RainfallGauges_RevA.wor